
Deciding a Multinomial over Z/2Z is not 0 is

NP-Complete

Phillip Feldman

May 2024

1 Introduction

I will show the following decision problem is NP-Complete:
Let

f : (Z/2Z)n → Z/2Z

Where 1 ≤ i ≤ n and the following symbols may appear in f:

(, ),×,+, 1, 0, xi

and have their common meaning from arithmetic. Decide YES if ∃x⃗ ∈ (Z/2Z)n
such that f(x⃗) = 1 and NO otherwise.

2 Proof

2.1 The problem is in NP

Given some x⃗, it can be checked that f(x⃗) = 1 by performing modular arith-
metic. This can be done in polynomial time.

2.2 The problem is NP-Hard

I will show this by proving a many-to-one reduction from 3-SAT.

2.2.1 Lemma: Field Isomorphism

I will use exclusive-OR (XOR) from computer science for convenience. I will
also shorten TRUE to T and FALSE to F. Inspect the following tables to verify
the following field isomorphism:
((T, F), XOR, AND) → ((1, 0),+Z2 ,×Z2)

1



2.2.2 XOR is associative: (A XOR B) XOR C = A XOR (B XOR
C)

A B C A XOR B B XOR C (A XOR B) XOR C A XOR (B XOR C)

T T T F F T T
T T F F T F F
T F T T T F F
T F F T F T T
F T T T F F F
F T F T T T T
F F T F T T T
F F F F F F F

2.2.3 AND distributes over XOR: A AND (B XOR C) = (A AND
B) XOR (A AND C)

A B C A AND B A AND C B XOR C A AND (B XOR C) (A AND B) XOR (A AND C)

T T T T T F F F
T T F T F T T T
T F T F T T T T
T F F F F F F F
F T T F F F F F
F T F F F T F F
F F T F F T F F
F F F F F F F F

Also note that XOR is commutative, AND is associative, and AND is commuta-
tive. You may inspect table 2.2.3 to verify that XOR behaves like + and AND
behaves like × in F2. This proves the field isomorphism.

2.2.4 Lemma

The following tables will be useful:

2.2.5 A OR B = A XOR B XOR (A AND B)

A B A OR B A AND B A XOR B A XOR B XOR (A AND B)

T T T T F T
T F T F T T
F T T F T T
F F F F F F

2



2.2.6 NOT A = A XOR T

A NOT A A XOR 1

T F F
F T T

2.2.7 Lemma: Eliminating repeated terms in a 3-SAT instance

Given some instance of 3-SAT, it is convenient that each grouping of disjunc-
tions only appears once. To eliminate repeated terms: sort each grouping’s
literals, then sort all the groupings by the literals in first, second, then third
position. Finally, perform a linear scan on the instance and eliminate any re-
peated terms. Since A AND A = A, the instance remains unchanged. Since the
above operations can be performed in polynomial time and are done only once,
the complexity class of the instance remains unchanged. This has the added
benefit of framing the complexity class of 3-SAT solely in terms of n, where n
is the number of variables in the instance. This is because there is a maximal
worst case amount of groupings that can appear in any instance, for any n.

2.2.8 Proof of 2.2

Given the above lemmas, we can transform any instance of 3-SAT into an in-
stance of the decision problem by rewriting the problem in F2. There are finitely
many forms a grouping can take, and each grouping will be rewritten as a group-
ing that requires at most 23 symbols. I will write some of them here. I will
write A×B as AB for convenience.

¬xi → (xi + 1)

A ∧B → AB

A ∨B → A+B +AB

A ∨B ∨ C → A+B + C +AB +AC +BC +ABC

The transformations can be done in polynomial time. performing modular
arithmetic can be done by lookup table. For each transformed grouping, the
maximum calls to the lookup table required is 12. So this entire transformation
is done in Polynomial Time, and a YES instance of 3-SAT transforms to a YES
instance of the decision problem.

3


